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Abstract

Most of the accelerated life testing literature ignores the possibility of competing modes of failure.
The literature that attempts to address this problem often does so by assuming independence
among the competing failure modes. Rather, the failure modes often display a highly depen-
dent structure, which is usually a function of the applied stresses. A dependent model for the
competing failure modes based on a copula model for the joint failure density is presented.

1 Introduction

The presence of competing risk in Accelerated life testing (ALT) has been taken into account for some time.
(McCool 1978) presents a technique for calculating estimate intervals for Weibull parameters of a primary
failure mode when a secondary failure mode having the same (but unknown) Weibull shape parameter is
acting. (Klein and Basu 1981,1982) presented in a series of papers, the analysis of ALT when more than
one failure mode is acting. Assuming independence among competing failure modes for each stress level, the
authors obtain maximum likelihood estimators when the lifetimes are exponentially or Weibull distributed,
and data is type I, type II or progressively censored. A dependent competing risk model is proposed by
considering a bivariate Weibull distribution as the joint survival function of two competing risks. (Nelson
1990) dedicates an entire chapter to competing failure modes in ALT. He presents graphical and analytical
(maximum likelihood) methods to analyze data on a failure mode, to estimate a product life distribution
when failure modes act and to estimate a product life distribution with certain failure modes eliminated.
Examples of products which have multiple cause of failure are given, including insulation systems, ball
bearings and industrial heaters.

In this article we develop a dependent model for the competing failure modes based on a copula model
for the joint failure density. In this model we describe the relation between the applied stress and the various
measures of association used to define or characterize the copula. We illustrate the improvement in inference
of our model as compared to those assuming independent competing risk using actual data ((Nelson 1990),
and it is collected from a temperature-accelerated life test of motor insulation).

2 Competing risks in ALT

We consider a m-constant stress level ALT. At each stress level l, l = 1, . . . m, a number of nl items are
tested until a failure or a censored time occur. The failure is assumed to occur due to k competing failure
modes, X1, X2, . . . Xk. In a competing risks context, we observe the shortest of Xi, i = 1, . . . k, and observe
which failure mode it is. In other words we observe Z = min(X1, X2, . . . Xk), D = (δ1, δ2, . . . δk), with

δi =
{

1, if Xi = min(X1, X2, . . . Xk)
0, if Xi 6= min(X1, X2, . . . Xk)

For an extended overview of competing risk theory see (Crowder 2001) and (Bunea 2003).
(Nelson 1990) indicated that complete data sets are usually analyzed with standard least-squares regres-

sion analysis. Such analysis may be misleading for data with competing failure modes. The analysis should



Table 1: Motor insulation data (hours) (Nelson 1990, chapter 7) (the underlined times are censored)

190◦C Turn Phase Ground 240◦C Turn Phase Ground
1 7228 10511 10511 21 1175 1175 1175
2 7228 11855 11855 22 1881 1881 1175
3 7228 11855 11855 23 1521 1881 1881
4 8448 11855 11855 24 1569 1761 1761
5 9167 12191 12191 25 1617 1881 1881
6 9167 12191 12191 26 1665 1881 1881
7 9167 12191 12191 27 1665 1881 1881
8 9167 12191 12191 28 1713 1881 1881
9 10511 12191 12191 29 1761 1881 1881
10 10511 12191 12191 30 1953 1953 1953

220◦C Turn Phase Ground 260◦C Turn Phase Ground
11 1764 2436 2436 31 1632 1632 600
12 2436 2436 2490 32 1632 1632 744
13 2436 2436 2436 33 1632 1632 744
14 2436 2772 2772 34 1632 1632 744
15 2436 2436 2436 35 1632 1632 912
16 2436 4116 4116 36 1128 1128 1128
17 3108 4116 4116 37 1512 1512 1320
18 3108 4116 4116 38 1464 1632 1632
19 3108 3108 3108 39 1608 1608 1608
20 3108 4116 4116 40 1896 1896 1896

consist from a separate ALT model for each failure mode and a series-system model for the relationship
between the failure times of each failure mode and the failure time of the component.

2.1 Motor insulation data

We consider a sample data given by (Nelson 1990), and it is collected from a temperature-accelerated life
test of motor insulation. This data is a pseudo-competing risk data. The experiment was conduct in order
to observe a greater number of failures for each failure mode. The motorette was kept on test and run to a
second or third failure after a first failure had occurred. In actual use, the first failure from any cause ends
the life of the motor. Table 1. gives the failure time for each cause (Turn, Phase, Ground). In order to keep
the analysis simple we consider only to competing risk classes: Class I - Turn failures; Class II - Phase and
Ground failures. Following the guide lines presented in Nelson for analysis of accelerated life testing when
competing risks are present, we can obtain the estimates for each model and then a series-system model
for the relationship between the failure times of each failure mode and the failure time of the component is
applied. Figure 1 presents the hazard plot for Risk I and the estimates obtained by least square method. A
similar picture is obtained for Risk II.

This analysis depends on the assumption of independence between risks at each stress level. Figure 2
presents the conditional subsurvival functions of the competing risks at each stress level. As indicated in
(Bunea 2003), these functions seem to have an important role in model selection, via graphical interpreta-
tion. Figure 2 indicates that the conditional subsurvival function for Risk II is dominant over the conditional
subsurvival function for Risk I at low stress levels, and as the stress level increases the failure mechanism is
changing and the conditional subsurvival function for Risk I became dominant over the conditional subsur-
vival function for Risk II. This is equivalent with a random sign model in competing risk theory, but with
Risks switched as the stress level increases. The random sings model is a highly dependent model, hence the



Figure 1: Hazard plot for Risk I - Turn failures

assumption of independence is not true.

3 Competing risks and copula

We assume that the dependence structure between X1 and X2 is given by a copula. The copula of two random
variables X1 and X2 is the distribution C on the unit square [0, 1]2 of the pair (FX1(X1), FX2(X2)). The
functional form of C : [0, 1]2 → R is C(u, v) ≡ H(F−1

X1
(u), F−1

X2
(v)), where H is the joint distribution function

of (X1, X2) and F−1
X1

and F−1
X2

are the right-continuous inverses of FX1 and FX2 . Under the assumption of
independence of X1 and X2, the marginal distribution functions of X1 and X2 are uniquely determined by
data. (Zheng and Klein 1995) showed the more general result that, if the copula of (X1, X2) is known, then
the marginal distributions functions of X1 and X2 are uniquely determined by the competing risk data.
More precisely, the marginal distributions functions FX1 and FX2 are solutions of the following system of
ordinary differential equations:{

{1− Cu(FX1(t), FX2(t))}F ′
X1

(t) = F ∗′

X1
(t)

{1− Cv(FX1(t), FX2(t))}F ′
X2

(t) = F ∗′

X2
(t)

with initial conditions FX1(0) = FX2(0) = 0, where Cu(FX1(t), FX2(t)) and Cv(FX1(t), FX2(t)) denote the
first order partial derivatives δ

δuC(u, v) and δ
δv C(u, v) calculated in (FX1(t), FX2(t)). F ∗

X1
(t) and F ∗

X2
(t) are

the subdistribution functions of X1 and X2.

3.1 Empirical copula
The estimators for copula density and copula are:
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Work of (Zheng and Klein 1995) suggests that the important factor for an estimate of the marginal survival
function is a reasonable guess at the strength of the association between competing risks (Kendall’s τ or
Spearman’s ρ) and not the functional form of the copula. The estimates of these measures as a function of
empirical copula are:
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Figure 2: Conditional subsurvival functions at stress level l = 1...4
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4 Discussion

An independent model can be misleading as simple plots of competing risk data indicate. Assuming the
dependence structure between risks being specified by a copula, estimators can be found for the measure of
association between competing risks (Kendall’s tau or Spearman’s rho). The marginal survival function can
be obtained also, for each risk at stress level l = 1...4. If a parametric family of copula is considered (e.g. an
Archimedean family), a strict relation between the measures of association and the family parameter exists.
Hence, this parameter varies as the stress varies.
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